Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.537
Filtrar
1.
Nutrients ; 16(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38337709

RESUMO

The PHYTOME study investigated the effect of consuming processed meat products on outcomes related to colorectal cancer risk without testing the impact of genetic variability on these responses. This research aims to elucidate the genetic impact on apparent total N-nitroso compound (ATNC) excretion, colonic DNA adduct formation, ex vivo-induced DNA damage, and gene expression changes in colon biopsies of healthy participants. Through a systematic literature review, candidate polymorphisms were selected and then detected using TaqMan and PCR analysis. The effect of genotype on study outcomes was determined via a linear mixed model and analysis of variance. Machine learning was used to evaluate relative allele importance concerning genotoxic responses, which established a ranking of the most protective alleles and a combination of genotypes (gene scores). Participants were grouped by GSTM1 genotype and differentially expressed genes (DEGs), and overrepresented biological pathways were compared between groups. Stratifying participants by ten relevant genes revealed significant variations in outcome responses. After consumption of processed red meat, variations in NQO1 and COMT impacted responses in ATNC levels (µmol/L) (+9.56 for wildtype vs. heterozygous) and DNA adduct levels (pg/µg DNA) (+1.26 for variant vs. wildtype and +0.43 for variant vs. heterozygous), respectively. After phytochemicals were added to the meat, GSTM1 variation impacted changes in DNA adduct levels (-6.12 for deletion vs. wildtype). The gene scores correlated with these responses and DEGs were identified by GSTM1 genotype. The altered pathways specific to the GSTM1 wildtype group included 'metabolism', 'cell cycle', 'vitamin D receptor', and 'metabolism of water-soluble vitamins and co-factors'. Genotype impacted both the potential genotoxicity of processed red meat and the efficacy of protective phytochemical extracts.


Assuntos
Produtos da Carne , Carne Vermelha , Humanos , Produtos da Carne/análise , Adutos de DNA/genética , Adutos de DNA/metabolismo , Transcriptoma , Dano ao DNA , Carne/análise , Carne Vermelha/análise , Compostos Nitrosos/metabolismo , Colo/metabolismo
2.
J Agric Food Chem ; 72(4): 2334-2346, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38235998

RESUMO

The metabolic transformation of aflatoxin B1 (AFB1) in pigs remains understudied, presenting a gap in our toxicological understanding compared with extensive human-based research. Here, we found that the main products of AFB1 in porcine liver microsomes (PLMs) were AFB1-8,9-epoxide (AFBO), the generation of which correlated strongly with the protein levels and activities of cytochrome P450 (CYP)3A and CYP2A. In addition, we found that porcine CYP2A19 can transform AFB1 into AFBO, and its metabolic activity was stronger than the other CYPs we have reported, including CYP1A2, CYP3A29, and CYP3A46. Furthermore, we stably transfected all identified CYPs in HepLi cells and found that CYP2A19 stable transfected HepLi cells showed more sensitivity in AFB1-induced DNA adducts, DNA damage, and γH2AX formation than the other three stable cell lines. Moreover, the CYP2A19 N297A mutant that lost catalytic activity toward AFB1 totally eliminated AFB1-induced AFB1-DNA adducts and γH2AX formations in CYP2A19 stable transfected HepLi cells. These results indicate that CYP2A19 mainly mediated AFB1-induced cytotoxicity through metabolizing AFB1 into a highly reactive AFBO, promoting DNA adduct formation and DNA damage, and lastly leading to cell death. This study advances the current understanding of AFB1 bioactivation in pigs and provides a promising target to reduce porcine aflatoxicosis.


Assuntos
Aflatoxina B1 , Sistema Enzimático do Citocromo P-450 , Humanos , Animais , Suínos , Aflatoxina B1/toxicidade , Aflatoxina B1/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Fígado/metabolismo , Citocromo P-450 CYP3A/metabolismo , Microssomos Hepáticos/metabolismo , Adutos de DNA/metabolismo
3.
Toxicology ; 501: 153714, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38141718

RESUMO

For genotoxic carcinogens, covalent binding to DNA is a critical initiating event in tumorigenesis. The present research investigated dose-effect relationships of three genotoxic carcinogens representing different structural classes, 2-acetylaminofluorene (2-AAF), benzo[a]pyrene (B[a]P) and quinoline (QUI), to assess the existence of no-observed-effect-levels (NOELs) for the formation of DNA adducts. Carcinogens were administered into the air sac of fertilized turkey eggs over wide dose ranges in three daily injections on days 22 to 24 of incubation. DNA adducts were measured in the fetal turkey livers by the 32P-nucleotide postlabeling (NPL) assay. B[a]P and QUI produced DNA adducts in a dosage-related manner and exhibited NOELs at 0.65 and 0.35 mg/kg bw/day, respectively. In contrast, 2-AAF formed DNA adducts at all tested dosages down to 0.005 mg/kg bw/day. Benchmark dose (BMD) analysis identified the potencies of 2-AAF and QUI to be similar, while B[a]P was the least potent compound. Overall, findings in fetal turkey livers demonstrated that exposure levels to genotoxic compounds that do not result in DNA adducts can exist but are not evident with all carcinogens of this type. The use of mechanistic dose-effect studies for genotoxic endpoints can provide critical information for prioritization of concerns for risk assessment.


Assuntos
Carcinógenos , Adutos de DNA , Carcinógenos/metabolismo , Adutos de DNA/metabolismo , Fígado , Dano ao DNA , 2-Acetilaminofluoreno/farmacologia , 2-Acetilaminofluoreno/toxicidade
4.
Nucleic Acids Res ; 51(20): 10846-10866, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37850658

RESUMO

Apurinic/apyrimidinic (AP) sites, 5-formyluracil (fU) and 5-formylcytosine (fC) are abundant DNA modifications that share aldehyde-type reactivity. Here, we demonstrate that polyamines featuring at least one secondary 1,2-diamine fragment in combination with aromatic units form covalent DNA adducts upon reaction with AP sites (with concomitant cleavage of the AP strand), fU and, to a lesser extent, fC residues. Using small-molecule mimics of AP site and fU, we show that reaction of secondary 1,2-diamines with AP sites leads to the formation of unprecedented 3'-tetrahydrofuro[2,3,4-ef]-1,4-diazepane ('ribodiazepane') scaffold, whereas the reaction with fU produces cationic 2,3-dihydro-1,4-diazepinium adducts via uracil ring opening. The reactivity of polyamines towards AP sites versus fU and fC can be tuned by modulating their chemical structure and pH of the reaction medium, enabling up to 20-fold chemoselectivity for AP sites with respect to fU and fC. This reaction is efficient in near-physiological conditions at low-micromolar concentration of polyamines and tolerant to the presence of a large excess of unmodified DNA. Remarkably, 3'-ribodiazepane adducts are chemically stable and resistant to the action of apurinic/apyrimidinic endonuclease 1 (APE1) and tyrosyl-DNA phosphoesterase 1 (TDP1), two DNA repair enzymes known to cleanse a variety of 3' end-blocking DNA lesions.


Assuntos
Adutos de DNA , Poliaminas , DNA/química , Adutos de DNA/química , Adutos de DNA/metabolismo , Dano ao DNA , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Conformação de Ácido Nucleico , Poliaminas/química , Poliaminas/metabolismo
5.
Arch Toxicol ; 97(12): 3179-3196, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37794256

RESUMO

Aflatoxin B1 (AFB1) is a highly hepatotoxic and carcinogenic mycotoxin produced by Aspergillus species. The compound is mainly metabolized in the liver and its metabolism varies between species. The present study quantified relevant AFB1- metabolites formed by mouse, rat, and human primary hepatocytes after treatment with 1 µM and 10 µM AFB1. The use of liquid chromatographic separation coupled with tandem mass spectrometric detection enabled the selective and sensitive determination of phase I and phase II metabolites of AFB1 over incubation times of up to 24 h. The binding of AFB1 to macromolecules was also considered. The fastest metabolism of AFB1 was observed in mouse hepatocytes which formed aflatoxin P1 as a major metabolite and also its glucuronidated form, while AFP1 occurred only in traces in the other species. Aflatoxin M1 was formed in all species and was, together with aflatoxin Q1 and aflatoxicol, the main metabolite in human cells. Effective epoxidation led to high amounts of DNA adducts already 30 min post-treatment, especially in rat hepatocytes. Lower levels of DNA adducts and fast DNA repair were found in mouse hepatocytes. Also, protein adducts arising from reactive intermediates were formed rapidly in all three species. Detoxification via glutathione conjugation and subsequent formation of the N-acetylcysteine derivative appeared to be similar in mice and in rats and strongly differed from human hepatocytes which did not form these metabolites at all. The use of qualitative reference material of a multitude of metabolites and the comparison of hepatocyte metabolism in three species using advanced methods enabled considerations on toxification and detoxification mechanisms of AFB1. In addition to glutathione conjugation, phase I metabolism is strongly involved in the detoxification of AFB1.


Assuntos
Aflatoxina B1 , Aflatoxinas , Humanos , Ratos , Camundongos , Animais , Aflatoxina B1/toxicidade , Cromatografia Líquida de Alta Pressão , Adutos de DNA/metabolismo , Espectrometria de Massas em Tandem , DNA , Aflatoxinas/farmacologia , Aflatoxinas/toxicidade , Fígado , Hepatócitos/metabolismo , Glutationa/metabolismo
6.
Arch Toxicol ; 97(5): 1319-1333, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36906727

RESUMO

Retrorsine is a hepatotoxic pyrrolizidine alkaloid (PA) found in herbal supplements and medicines, food and livestock feed. Dose-response studies enabling the derivation of a point of departure including a benchmark dose for risk assessment of retrorsine in humans and animals are not available. Addressing this need, a physiologically based toxicokinetic (PBTK) model of retrorsine was developed for mouse and rat. Comprehensive characterization of retrorsine toxicokinetics revealed: both the fraction absorbed from the intestine (78%) and the fraction unbound in plasma (60%) are high, hepatic membrane permeation is dominated by active uptake and not by passive diffusion, liver metabolic clearance is 4-fold higher in rat compared to mouse and renal excretion contributes to 20% of the total clearance. The PBTK model was calibrated with kinetic data from available mouse and rat studies using maximum likelihood estimation. PBTK model evaluation showed convincing goodness-of-fit for hepatic retrorsine and retrorsine-derived DNA adducts. Furthermore, the developed model allowed to translate in vitro liver toxicity data of retrorsine to in vivo dose-response data. Resulting benchmark dose confidence intervals (mg/kg bodyweight) are 24.1-88.5 in mice and 79.9-104 in rats for acute liver toxicity after oral retrorsine intake. As the PBTK model was built to enable extrapolation to different species and other PA congeners, this integrative framework constitutes a flexible tool to address gaps in the risk assessment of PA.


Assuntos
Alcaloides de Pirrolizidina , Humanos , Ratos , Camundongos , Animais , Alcaloides de Pirrolizidina/metabolismo , Fígado/metabolismo , Microssomos Hepáticos/metabolismo , Adutos de DNA/metabolismo
7.
Sci Total Environ ; 866: 161373, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36621472

RESUMO

N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPDQ), one of the oxidation products of rubber antioxidant 6PPD, has been identified as a novel toxicant to many organisms. However, an understanding of its underlying toxicity mechanisms remained elusive. In this study, we reported that 6PPDQ could react with deoxyguanosine to form one isomer of 3-hydroxy-1, N2-6PPD-etheno-2'-deoxyguanosine (6PPDQ-dG). Next, by employing an ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS) method, we found that 6PPDQ-dG could be detected in genomic DNA from 6PPDQ-treated mammalian cells and Chlamydomonas reinhardtii. We observed positive correlations between concentrations of exogenous 6PPDQ and the amounts of 6PPDQ-dG, and a recovery period after removal of 6PPDQ also led to decreased levels of the adduct in both organisms, which suggested potential repair pathways for this adduct in mammalian cells and unicellular algae. Additionally, we extracted the genomic DNA from tissues of frozen capelin and observed substantial amounts of the adduct in roe and gills, as well as livers at a relatively lower level. These results provided insights into the target organs and tissues that 6PPDQ might accumulate or harm fish. Overall, our study provides a new understanding of the mechanisms of toxicity of 6PPDQ in mammalian cells and aqueous organisms.


Assuntos
Antioxidantes , Benzoquinonas , Chlamydomonas reinhardtii , Adutos de DNA , Fenilenodiaminas , Cromatografia Líquida de Alta Pressão , Desoxiguanosina/química , Adutos de DNA/metabolismo , Quinonas , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Fenilenodiaminas/química , Fenilenodiaminas/metabolismo , Fenilenodiaminas/toxicidade , Benzoquinonas/química , Benzoquinonas/metabolismo , Benzoquinonas/toxicidade , Antioxidantes/química , Antioxidantes/metabolismo , Antioxidantes/toxicidade , Chlamydomonas reinhardtii/efeitos dos fármacos , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Humanos , Células A549
8.
Fundam Clin Pharmacol ; 37(2): 369-384, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36214208

RESUMO

Aflatoxin B1 (AFB1) is known to derange the hepatorenal system by redox, DNA adduct formation and apoptotic networks. Endogenous 3-indole propionic acid (3-IPA) is a metabolite of tryptophan metabolism by gut microbiota that can protect against redox imbalance, inflammation and cellular lipid damage. We investigated the beneficial effect of 3-IPA against AFB1-mediated organ toxicity in male rats post 28 days of consecutive treatment. The 3-IPA (25 and 50 mg/kg) was orally administered alongside AFB1 (50 µg/kg) treatment. Biochemical and enzyme-linked immunosorbent assays were utilised to examine biomarkers of hepatorenal function, oxidative status and inflammation. DNA damage and apoptosis were also assessed, and histological staining techniques were used to investigate hepatorenal tissues for pathological indicators. The 3-IPA supplementation abated AFB1-mediated increases in biomarkers of hepatic and renal dysfunction in rat serum. Co-administration of 3-IPA further reduced AFB1-induced redox imbalance (by upregulating antioxidant mediators and enzymes [GSH, TSH, Trx, Trx-R, SOD, CAT, GPx and GST]; reducing reactive oxygen species, lipid peroxidation and DNA adduct [RONS, LPO and 8-OH-dG] formation; suppressing pro-inflammatory and apoptotic mediators [XO, MPO, NO, IL-1ß and Casp -9 and -3]; and upregulating the level of interleukin 10 (IL-10). Moreover, treatment with 3-IPA lessened hepatorenal tissue injuries. These findings suggest that augmenting 3-IPA endogenously from tryptophan metabolism may provide a novel strategy to forestall xenobiotics-mediated hepatorenal toxicity, including AFB1.


Assuntos
Aflatoxina B1 , Adutos de DNA , Ratos , Animais , Masculino , Aflatoxina B1/toxicidade , Aflatoxina B1/metabolismo , Adutos de DNA/metabolismo , Adutos de DNA/farmacologia , Triptofano/metabolismo , Triptofano/farmacologia , Glutationa/metabolismo , Fígado , Inflamação/metabolismo , Rim/metabolismo , Biomarcadores/metabolismo , Estresse Oxidativo
9.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36555294

RESUMO

DNA helicase unwinding activity can be inhibited by small molecules and by covalently bound DNA lesions. Little is known about the relationships between the structural features of DNA lesions and their impact on unwinding rates and processivities. Employing E.coli RecQ helicase as a model system, and various conformationally defined DNA lesions, the unwinding rate constants kobs = kU + kD, and processivities P = (kU/(kU + kD) were determined (kU, unwinding rate constant; kD, helicase-DNA dissociation rate constant). The highest kobs values were observed in the case of intercalated benzo[a]pyrene (BP)-derived adenine adducts, while kobs values of guanine adducts with minor groove or base-displaced intercalated adduct conformations were ~10-20 times smaller. Full unwinding was observed in each case with the processivity P = 1.0 (100% unwinding). The kobs values of the non-bulky lesions T(6-4)T, CPD cyclobutane thymine dimers, and a guanine oxidation product, spiroiminodihydantoin (Sp), are up to 20 times greater than some of the bulky adduct values; their unwinding efficiencies are strongly inhibited with processivities P = 0.11 (CPD), 0.062 (T(6-4)T), and 0.63 (Sp). These latter observations can be accounted for by correlated decreases in unwinding rate constants and enhancements in the helicase DNA complex dissociation rate constants.


Assuntos
Escherichia coli , RecQ Helicases , RecQ Helicases/metabolismo , Escherichia coli/metabolismo , DNA/química , Relação Estrutura-Atividade , Guanina/metabolismo , Adutos de DNA/metabolismo
10.
Toxins (Basel) ; 14(6)2022 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-35737038

RESUMO

Pyrrolizidine alkaloids (PAs) have been found in over 6000 plants worldwide and represent the most common hepatotoxic phytotoxins. Catalyzed by hepatic cytochrome P450 enzymes, PAs are metabolized into reactive pyrrolic metabolites, which can alkylate cellular proteins and DNA to form pyrrole-protein adducts and pyrrole-DNA adducts, leading to cytotoxicity, genotoxicity, and tumorigenicity. To date, the correlation between these PA-derived pyrrole-protein and pyrrole-DNA adducts has not been well investigated. Retrorsine is a representative hepatotoxic and carcinogenic PA. In the present study, the correlations among the PA-derived liver DNA adducts, liver protein adducts, and serum protein adducts in retrorsine-treated mice under different dosage regimens were studied. The results showed positive correlations among these adducts, in which serum pyrrole-protein adducts were more accessible and present in higher abundance, and thus could be used as a suitable surrogate biomarker for pyrrole-DNA adducts to indicate the genetic or carcinogenic risk posed by retrorsine.


Assuntos
Adutos de DNA , Alcaloides de Pirrolizidina , Animais , Carcinógenos/metabolismo , DNA/metabolismo , Adutos de DNA/metabolismo , Adutos de DNA/farmacologia , Fígado , Masculino , Camundongos , Camundongos Endogâmicos ICR , Proteínas/metabolismo , Pirróis/toxicidade , Alcaloides de Pirrolizidina/toxicidade
11.
Carcinogenesis ; 43(7): 659-670, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35353881

RESUMO

Our earlier work demonstrated varying potency of dihydromethysticin (DHM) as the active kava phytochemical for prophylaxis of tobacco carcinogen nicotine-derived nitrosamine ketone (NNK)-induced mouse lung carcinogenesis. Efficacy was dependent on timing of DHM gavage ahead of NNK insult. In addition to DNA adducts in the lung tissues mitigated by DHM in a time-dependent manner, our in vivo data strongly implicated the existence of DNA damage-independent mechanism(s) in NNK-induced lung carcinogenesis targeted by DHM to fully exert its anti-initiation efficacy. In the present work, RNA seq transcriptomic profiling of NNK-exposed (2 h) lung tissues with/without a DHM (8 h) pretreatment revealed a snap shot of canonical acute phase tissue damage and stress response signaling pathways as well as an activation of protein kinase A (PKA) pathway induced by NNK and the restraining effects of DHM. The activation of the PKA pathway by NNK active metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) at a concentration incapable of promoting DNA adduct was confirmed in a lung cancer cell culture model, potentially through NNAL binding to and activation of the ß-adrenergic receptor. Our in vitro and in vivo data overall support the hypothesis that DHM suppresses PKA activation as a key DNA damage-independent mechanistic lead, contributing to its effective prophylaxis of NNK-induced lung carcinogenesis. Systems biology approaches with a detailed temporal dissection of timing of DHM intake versus NNK exposure are warranted to fill the knowledge gaps concerning the DNA damage-driven mechanisms and DNA damage-independent mechanisms to optimize the implementation strategy for DHM to achieve maximal lung cancer chemoprevention.


Assuntos
Neoplasias Pulmonares , Nitrosaminas , Animais , Carcinogênese/induzido quimicamente , Carcinogênese/metabolismo , Carcinógenos/metabolismo , Carcinógenos/toxicidade , Proteínas Quinases Dependentes de AMP Cíclico/efeitos adversos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Adutos de DNA/metabolismo , Dano ao DNA , Pulmão/metabolismo , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/prevenção & controle , Camundongos , Nitrosaminas/metabolismo , Nitrosaminas/toxicidade , Pironas
12.
Arch Toxicol ; 96(3): 933-944, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34997255

RESUMO

Juices of Brassica vegetables are mutagenic and form characteristic DNA adducts in bacteria and mammalian cells. In this study, we examined whether such adducts are also formed in vivo in animal models. Rats fed raw broccoli ad libitum in addition to normal laboratory chow for 5 weeks showed one major adduct spot and sometimes an additional minor adduct spot in liver, kidney, lung, blood and the gastrointestinal tract, as determined by 32P-postlabelling/thin-layer chromatography. Adducts with the same chromatographic properties were formed when herring sperm DNA (or dG-3'-phosphate) was incubated with 1-methoxy-3-indolylmethyl glucosinolate (phytochemical present in Brassica plants), in the presence of myrosinase (plant enzyme that hydrolyses glucosinolates to bioactive breakdown products). UPLC-MS/MS analysis corroborated this finding: 1-Methoxy-3-indolylmethyl-substituted purine nucleosides were detected in the hepatic DNA of broccoli-fed animals, but not in control animals. Feeding raw cauliflower led to the formation of the same adducts. When steamed rather than raw broccoli was used, the adduct levels were essentially unchanged in liver and jejunum, but elevated in large intestine. Due to inactivation of myrosinase by the steaming, higher levels of the glucosinolates may have reached the large bowl to be activated by glucosidases from intestinal bacteria. In conclusion, the consumption of common Brassica vegetables can lead to the formation of substantial levels of DNA adducts in animal models. The adducts can be attributed to a specific phytochemical, neoglucobrassicin (1-methoxy-3-indolylmethyl glucosinolate).


Assuntos
Brassica/química , Adutos de DNA/metabolismo , Glucosinolatos/metabolismo , Animais , Cromatografia Líquida , Indóis/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Verduras
13.
Int J Mol Sci ; 24(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36614051

RESUMO

Organoids are 3D cultures that to some extent reproduce the structure, composition and function of the mammalian tissues from which they derive, thereby creating in vitro systems with more in vivo-like characteristics than 2D monocultures. Here, the ability of human organoids derived from normal gastric, pancreas, liver, colon and kidney tissues to metabolise the environmental carcinogen benzo[a]pyrene (BaP) was investigated. While organoids from the different tissues showed varied cytotoxic responses to BaP, with gastric and colon organoids being the most susceptible, the xenobiotic-metabolising enzyme (XME) genes, CYP1A1 and NQO1, were highly upregulated in all organoid types, with kidney organoids having the highest levels. Furthermore, the presence of two key metabolites, BaP-t-7,8-dihydrodiol and BaP-tetrol-l-1, was detected in all organoid types, confirming their ability to metabolise BaP. BaP bioactivation was confirmed both by the activation of the DNA damage response pathway (induction of p-p53, pCHK2, p21 and γ-H2AX) and by DNA adduct formation. Overall, pancreatic and undifferentiated liver organoids formed the highest levels of DNA adducts. Colon organoids had the lowest responses in DNA adduct and metabolite formation, as well as XME expression. Additionally, high-throughput RT-qPCR explored differences in gene expression between organoid types after BaP treatment. The results demonstrate the potential usefulness of organoids for studying environmental carcinogenesis and genetic toxicology.


Assuntos
Benzo(a)pireno , Adutos de DNA , Organoides , Humanos , Ativação Metabólica , Benzo(a)pireno/toxicidade , Citocromo P-450 CYP1A1/metabolismo , Adutos de DNA/metabolismo , Fígado/metabolismo , Organoides/efeitos dos fármacos , Organoides/metabolismo
14.
Cell Biol Toxicol ; 38(5): 865-887, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34036453

RESUMO

Exposure to environmental and occupational contaminants leads to lung cancer. 3-Nitrobenzanthrone (3-nitro-7H-benz[de]anthracen-7-one, 3-NBA) is a potential carcinogen in ambient air or diesel particulate matter. Studies have revealed that short-term exposure to 3-NBA induces cell death, reactive oxygen species activation, and DNA adduct formation and damage. However, details of the mechanism by which chronic exposure to 3-NBA influences lung carcinogenesis remain largely unknown. In this study, human lung epithelial BEAS-2B cells were continuously exposed to 0-10-µM 3-NBA for 6 months. NanoString analysis was conducted to evaluate gene expression in the cells, revealing that 3-NBA-mediated transformation results in a distinct gene expression signature including carbon cancer metabolism, metastasis, and angiogenesis. Alterations in tumor-promoting genes such as EREG (epiregulin), SOX9, E-cadherin, TWIST, and IL-6 were involved in epithelial cell aggressiveness. Kaplan-Meier plotter analyses indicated that increased EREG and IL-6 expressions in early-stage lung cancer cells are correlated with poor survival. In vivo xenografts on 3-NBA-transformed cells exhibited prominent tumor formation and metastasis. EREG knockout cells exposed to 3-NBA for a short period exhibited high apoptosis and low colony formation. By contrast, overexpression of EREG in 3-NBA-transformed cells markedly activated the PI3K/AKT and MEK/ERK signaling pathways, resulting in tumorigenicity. Furthermore, elevated IL-6 and EREG expressions synergistically led to STAT3 signaling activation, resulting in clonogenic cell survival and migration. Taken together, chronic exposure of human lung epithelial cells to 3-NBA leads to malignant transformation, in which the EREG signaling pathway plays a pivotal mediating role. • Short-term exposure of lung epithelial cells to 3-NBA can lead to ROS production and cell apoptosis. • Long-term chronic exposure to 3-NBA upregulates the levels of tumor-promoting genes such as EREG and IL-6. • Increased EREG expression in 3-NBA-transformed cells markedly contributes to tumorigenesis through PI3K/AKT and MEK/ERK activation and synergistically enhances the IL-6/STAT3 signaling pathway, which promotes tumorigenicity.


Assuntos
Adutos de DNA , Neoplasias Pulmonares , Benzo(a)Antracenos , Caderinas/metabolismo , Carbono/metabolismo , Carbono/farmacologia , Carcinogênese/metabolismo , Carcinógenos , Transformação Celular Neoplásica/metabolismo , Adutos de DNA/metabolismo , Adutos de DNA/farmacologia , Epirregulina/genética , Epirregulina/metabolismo , Epirregulina/farmacologia , Células Epiteliais/metabolismo , Humanos , Interleucina-6/metabolismo , Pulmão/metabolismo , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/farmacologia , Material Particulado/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
15.
Toxicology ; 464: 153022, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34743026

RESUMO

Acrylamide (AA) is a carcinogen formed during thermal food processing and can cause tumors in rodents while its carcinogenic potency in humans is unclear. Metabolism of AA, preferentially in the liver, leads to glycidamide (GA) forming N7-GA-guanine (N7-GA-Gua) as the major AA-derived DNA adduct in rodents. Here, a novel method allowing high sensitivity by avoidance of major matrix effects was applied to analyze N7-GA-Gua levels in nuclear DNA from rat hepatocytes in primary culture. We could thus for the first time detect a background level of 5-10 adducts/108 nucleosides in untreated hepatocytes. Incubation with AA did not result in a statistically significant increase in adduct levels over background up to a substrate concentration of 500 µM although a trend to slightly higher adduct levels was observed at and above 200 µM AA. At concentrations > 500 µM significant increases in N7-GA-Gua levels were found. When Benchmark concentration (BMC) modeling was applied to the data, non-linear concentration-response curves were obtained suggesting that AA started to cause measurable increases over background of N7-GA-Gua levels above certain concentrations only. Calculation of the composite BMCL10 (Lower Bound of a 95 % confidence interval) of a BMC leading to a 10 % increase of N7-GA-Gua levels over background resulted in a value of 6.35 µM AA after 24 h. A concentration below this value cannot be expected to lead to an increase in N7-GA-Gua of more than 10 % over the background seen in untreated hepatocytes.


Assuntos
Acrilamida/toxicidade , Adutos de DNA/metabolismo , Compostos de Epóxi/metabolismo , Hepatócitos/metabolismo , Animais , Benchmarking , Carcinógenos/toxicidade , Relação Dose-Resposta a Droga , Masculino , Ratos , Ratos Wistar
16.
Chem Res Toxicol ; 34(11): 2375-2383, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34726909

RESUMO

1,3-Butadiene is a known carcinogen primarily targeting lymphoid tissues, lung, and liver. Cytochrome P450 activates butadiene to epoxides which form covalent DNA adducts that are thought to be a key mechanistic event in cancer. Previous studies suggested that inter-species, -tissue, and -individual susceptibility to adverse health effects of butadiene exposure may be due to differences in metabolism and other mechanisms. In this study, we aimed to examine the extent of inter-individual and inter-species variability in the urinary N7-(1-hydroxy-3-buten-2-yl)guanine (EB-GII) DNA adduct, a well-known biomarker of exposure to butadiene. For a population variability study in mice, we used the collaborative cross model. Female and male mice from five strains were exposed to filtered air or butadiene (590 ppm, 6 h/day, 5 days/week for 2 weeks) by inhalation. Urine samples were collected, and the metabolic activation of butadiene by DNA-reactive species was quantified as urinary EB-GII adducts. We quantified the degree of EB-GII variation across mouse strains and sexes; then, we compared this variation with the data from rats (exposed to 62.5 or 200 ppm butadiene) and humans (0.004-2.2 ppm butadiene). We show that sex and strain are significant contributors to the variability in urinary EB-GII levels in mice. In addition, we find that the degree of variability in urinary EB-GII in collaborative cross mice, when expressed as an uncertainty factor for the inter-individual variability (UFH), is relatively modest (≤threefold) possibly due to metabolic saturation. By contrast, the variability in urinary EB-GII (adjusted for exposure) observed in humans, while larger than the default value of 10-fold, is largely consistent with UFH estimates for other chemicals based on human data for non-cancer endpoints. Overall, these data demonstrate that urinary EB-GII levels, particularly from human studies, may be useful for quantitative characterization of human variability in cancer risks to butadiene.


Assuntos
Butadienos/urina , Adutos de DNA/urina , Animais , Butadienos/administração & dosagem , Butadienos/metabolismo , Cromatografia Líquida , Adutos de DNA/administração & dosagem , Adutos de DNA/metabolismo , Feminino , Exposição por Inalação , Masculino , Camundongos , Camundongos Endogâmicos , Nanotecnologia , Espectrometria de Massas por Ionização por Electrospray
17.
Int J Mol Sci ; 22(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34638820

RESUMO

The plant extract aristolochic acid (AA), containing aristolochic acids I (AAI) and II (AAII) as major components, causes aristolochic acid nephropathy (AAN) and Balkan endemic nephropathy (BEN), unique renal diseases associated with upper urothelial cancer. Recently (Chemical Research in Toxicology 33(11), 2804-2818, 2020), we showed that the in vivo metabolism of AAI and AAII in Wistar rats is influenced by their co-exposure (i.e., AAI/AAII mixture). Using the same rat model, we investigated how exposure to the AAI/AAII mixture can influence AAI and AAII DNA adduct formation (i.e., AA-mediated genotoxicity). Using 32P-postlabelling, we found that AA-DNA adduct formation was increased in the livers and kidneys of rats treated with AAI/AAII mixture compared to rats treated with AAI or AAII alone. Measuring the activity of enzymes involved in AA metabolism, we showed that enhanced AA-DNA adduct formation might be caused partially by both decreased AAI detoxification as a result of hepatic CYP2C11 inhibition during treatment with AAI/AAII mixture and by hepatic or renal NQO1 induction, the key enzyme predominantly activating AA to DNA adducts. Moreover, our results indicate that AAII might act as an inhibitor of AAI detoxification in vivo. Consequently, higher amounts of AAI might remain in liver and kidney tissues, which can be reductively activated, resulting in enhanced AAI DNA adduct formation. Collectively, these results indicate that AAII present in the plant extract AA enhances the genotoxic properties of AAI (i.e., AAI DNA adduct formation). As patients suffering from AAN and BEN are always exposed to the plant extract (i.e., AAI/AAII mixture), our findings are crucial to better understanding host factors critical for AAN- and BEN-associated urothelial malignancy.


Assuntos
Ácidos Aristolóquicos/toxicidade , Carcinogênese , Carcinógenos/toxicidade , Adutos de DNA/metabolismo , DNA de Neoplasias/metabolismo , Animais , Carcinogênese/induzido quimicamente , Carcinogênese/metabolismo , Masculino , Ratos , Ratos Wistar
18.
Food Chem Toxicol ; 157: 112575, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34560178

RESUMO

Acrylamide (AA) is a carcinogen formed during thermal food processing and can cause tumors in rodents while its carcinogenic potency in humans is unclear. Metabolic conversion of AA leads to glycidamide (GA) forming N7-GA-guanine (N7-GA-Gua) as the major DNA adduct in rodents while no such adducts were found in human tissues so far. In a cohort of 56 healthy volunteers adduct levels were determined in peripheral blood mononuclear cell (PBMC) DNA and anthropometric, dietary, and biochemical parameters were measured or inquired using a questionnaire. In the majority of PBMC DNA samples the levels found were above one adduct/108 nucleosides not being correlated to dietary habits including coffee consumption, or to blood glucose levels or hemoglobin HbA1c. However, adduct levels were significantly correlated with the body mass index (BMI) and showed a continuous increase over three BMI classes. Our findings indicate a background of AA-derived DNA adducts present in humans in PBMC related to body mass rather than to certain dietary or lifestyle factors.


Assuntos
Acrilamida/metabolismo , Carcinógenos/metabolismo , Adutos de DNA/metabolismo , DNA/metabolismo , Leucócitos Mononucleares/metabolismo , Adulto , Índice de Massa Corporal , DNA/análise , Adutos de DNA/análise , Feminino , Humanos , Leucócitos Mononucleares/química , Masculino , Pessoa de Meia-Idade , Adulto Jovem
19.
Nature ; 596(7873): 597-602, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34408320

RESUMO

ADP-ribosyltransferases use NAD+ to catalyse substrate ADP-ribosylation1, and thereby regulate cellular pathways or contribute to toxin-mediated pathogenicity of bacteria2-4. Reversible ADP-ribosylation has traditionally been considered a protein-specific modification5, but recent in vitro studies have suggested nucleic acids as targets6-9. Here we present evidence that specific, reversible ADP-ribosylation of DNA on thymidine bases occurs in cellulo through the DarT-DarG toxin-antitoxin system, which is found in a variety of bacteria (including global pathogens such as Mycobacterium tuberculosis, enteropathogenic Escherichia coli and Pseudomonas aeruginosa)10. We report the structure of DarT, which identifies this protein as a diverged member of the PARP family. We provide a set of high-resolution structures of this enzyme in ligand-free and pre- and post-reaction states, which reveals a specialized mechanism of catalysis that includes a key active-site arginine that extends the canonical ADP-ribosyltransferase toolkit. Comparison with PARP-HPF1, a well-established DNA repair protein ADP-ribosylation complex, offers insights into how the DarT class of ADP-ribosyltransferases evolved into specific DNA-modifying enzymes. Together, our structural and mechanistic data provide details of this PARP family member and contribute to a fundamental understanding of the ADP-ribosylation of nucleic acids. We also show that thymine-linked ADP-ribose DNA adducts reversed by DarG antitoxin (functioning as a noncanonical DNA repair factor) are used not only for targeted DNA damage to induce toxicity, but also as a signalling strategy for cellular processes. Using M. tuberculosis as an exemplar, we show that DarT-DarG regulates growth by ADP-ribosylation of DNA at the origin of chromosome replication.


Assuntos
ADP-Ribosilação , Proteínas de Bactérias/metabolismo , DNA/química , DNA/metabolismo , Timina/química , Timina/metabolismo , Adenosina Difosfato Ribose/metabolismo , Antitoxinas , Proteínas de Bactérias/química , Toxinas Bacterianas , Sequência de Bases , Biocatálise , DNA/genética , Adutos de DNA/química , Adutos de DNA/metabolismo , Dano ao DNA , Reparo do DNA , Elementos de DNA Transponíveis/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Modelos Moleculares , Mycobacterium/enzimologia , Mycobacterium/genética , Nitrogênio/química , Nitrogênio/metabolismo , Poli(ADP-Ribose) Polimerases/química , Origem de Replicação/genética , Especificidade por Substrato , Thermus/enzimologia , Timidina/química , Timidina/metabolismo
20.
J Chem Phys ; 154(17): 175102, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34241046

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are widely distributed in environments, and some of them are causative agents of human cancer. Previous studies concluded that benzo[a]pyrene-7,8-dione (BPQ), which is one kind of carcinogenic PAH metabolites, forms covalently bonded adducts with DNA, and the major adduct formed is a deoxyguanosine adduct. In this work, we investigate the interactions between BPQ and DNA molecules via first-principles calculations. We identify six possible DNA adducts with BPQ. In addition to the four adducts forming covalent bonds, there are two adducts bound purely by van der Waals (vdW) interactions. Remarkably, the two vdW-bound adducts have comparable, if not larger, binding energies as the covalent adducts. The results may help us gain more understanding of the interactions between PAH metabolites and DNA.


Assuntos
Benzopirenos/química , Adutos de DNA/química , Teoria da Densidade Funcional , Simulação de Dinâmica Molecular , Benzopirenos/metabolismo , Adutos de DNA/metabolismo , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...